STRAND **ASSOCIATES**[®]

Excellence in Engineering Since 1946

Strand Associates, Inc.[®] (SAT)

Research Forest Drive and Lake Woodlands Drive – Project Summary Meeting

The Woodlands Montgomery County Precinct 3 April 15, 2021

Welcome and Introductions

Strand Associates Team

Luke Holman, P.E. Project Manager

Jared Engelke, P.E. Project Engineer

Kyle Henderson Traffic Engineer

Craig Kankel, P.E. Project Advisor

Agenda

- 1. Project Overview Needs Identification
- 2. Initial (CAP-X) Screening Summary
- 3. Detailed Operational Analysis Summary
- 4. Intersection Alternative Development
- 5. Alternative Conflict Point Analysis
- 6. Preliminary Alternative Costs
- 7. Project Next Steps

Project Overview – Location and Scope

- Intersection Analysis
 - Tier 1 intersections (2) at-grade and grade-separated alternatives
 - Tier 2 (15) traffic signal optimization and turn-lane improvement alternatives
 - Today's focus: Tier 1 intersections, particularly Grogan's Mill & Research Forest

Project Overview – Project Timeline

Intersection History (Grogans Mill & Research Forest)

- Previous study history
- High crash rates at Grogans Mill Road and Research Forest Drive
 - o 37 crashes per year (3 crashes per month)
 - 3 serious crashes per year
- Short term improvements have been exhausted
 - Added supplemental wrong way signage
 - Ordered flashing "Wrong Way" signage along with "Do Not Enter" signage
 - Added signage to the signal mast arms
 - Adjusted signal timing for safety
 - $_{\odot}$ Relocated the SE signal pole to the other side of the street
 - $_{\odot}\,$ Guard rails were added on the eastbound approach
 - Vegetation is routinely trimmed

Project Overview – Comparison of Current to Previous Traffic Counts

- Existing traffic counts Current vs Previous study
 - Geoffrey E. Havers (GEH) statistical test evaluate similarity of two data sets
 - GEH values: below 5 = good match, values >5 and <10 = additional investigation may be warranted
 - o Goal: 90 percent of data points with a GEH less than or equal to 5

Peak Hour	# of data points	# with GEH < 5	% with GEH <5				
Research Forest Drive and Grogans Mill Road							
AM Peak	16	15	93.8%				
PM Peak	16	16	100%				
Lake Woodlands Drive and Grogans Mill Road							
AM Peak	14	14	100%				
PM Peak	14	14	100%				

 The EB thru at SB Grogans Mill Road has a GEH of 5.38. The new count is 1301 vs. the previous study value of 1114

Project Overview – Future Volume Development

 Future traffic volumes developed by applying the Houston-Galveston Area Council (H-GAC) travel demand model growth rates to 2019 traffic count data

H-GAC Travel Demand Model Growth (from 2019 Base)

Corridor	2030 Growth	2045 Growth
Research Forest Drive	16.4%	29.8%
Lake Woodlands Drive	55.8%	65.1%
Grogan Mill Road	41.3%	62.0%

- What is CAP-X? An intersection capacity screening tool developed by FHWA
- 15 at-grade and 8 grade-separated alternatives were screened for each Tier 1 intersection
- Why 15 at-grade alternatives? Many ways to accommodate left-turn traffic (typically, left-turn lanes are the least efficient movements)
- Evaluated both AM and PM peak hour traffic for each alternative
- Most promising CAP-X alternatives were then evaluated in greater detail

Capacity Analysis for Planning of Junctions					
	Input Worksheet				
Project Name:	Research Forest and Lake Woodlands	(Critical Lane	Volume Sun	2
Project Number:	4609.001	4	Acceptable C	onfiguration	SC
Location	2045 PM Reasearch Forest Drive and Grogans Mill Road	< 1200	<mark>1200 - 1399</mark>	1400 - 1599	≥ 1600
Date	April 18, 2019	7	11	5	9

Results for intersections																
		Chart	Zo (No	ne 1 orth)	Zo (So	ne 2 uth)	Zo (Ea	ne 3 ast)	Zor (Ve	ne 4 est)	Zoi (Cei	ne 5 nter)	Overall v/c	Dealling		
#	# ITPE OF INTERSECTION	ITPE OF INTERSECTION	ITPE OF INTERSECTION	Sheet	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio	Ranking
1	Conventional	FULL					/				1430	<u>0.89</u>	0.89	10		
2	Conventional Shared RT LN	CSRL		\square			/	\square	\square	\square	1600	<u>1.00</u>	1.00	14		
3.1		<u>S-W</u>			1289	0.81	/		1122	<u>0.70</u>	1100	<u>0.69</u>	0.81	6		
3.2	Our date of Decidings	<u>N-E</u>	1128	0.70		/	1057	0.66			1385	<u>0.87</u>	0.87	8		
3.3	Quadrant Roadway	<u>S-E</u>		\square	1459	<u>0.91</u>	1459	<u>0.91</u>		\square	1254	<u>0.78</u>	0.91	11		
3.4		<u>N-W</u>	1084	0.68		\square		\square	1257	<u>0.79</u>	1198	<u>0.75</u>	0.79	4		
4.1		<u>N-S</u>	554	0.35	901	0.56	/				1212	<u>0.76</u>	0.76	2		
4.2	Partial Displaced Left Turn	<u>E-W</u>		\square	/		698	0.44	1059	0.66	1260	<u>0.79</u>	0.79	5		
5	Displaced Left Turn	FULL	325	0.20	659	0.41	821	<u>0.51</u>	1059	<u>0.66</u>	1009	<u>0.63</u>	0.66	1		
6.1	Dentside of Consultant II Town	<u>N-S</u>	1595	<u>1.00</u>	1855	<u>1.16</u>	3213	2.01	2136	1.33	/		2.01	15		
6.2	Restricted Crossing 0-10m	<u>E-W</u>	1256	<u>0.79</u>	1134	<u>0.71</u>	1391	<u>0.87</u>	973	0.61	/		0.87	9		
7.1	Median II Turn	<u>N-S</u>	982	<u>0.61</u>	1067	<u>0.67</u>		\square		\square	1257	<u>0.79</u>	0.79	3		
7.2	Median U-Turn	<u>E-W</u>					1346	<u>0.84</u>	962	<u>0.60</u>	1351	<u>0.84</u>	0.84	7		
8.1	Deutial Median II Turn	<u>N-S</u>	836	0.52	826	0.52	/	\square			1485	<u>0.93</u>	0.93	12		
8.2	Paruai median 0-10m	E-W		\square	/	/	850	0.53	905	0.57	1485	0.93	0.93	12		

CAP-X (Capacity Analysis for Planning of Junctions)

• Median U-turn example of non-traditional at-grade intersection alternatives from CAP-X

Median U-Turn – Fishers, IN

 Displaced Left Turn and Quadrant Roadway examples of non-traditional, at-grade intersection alternatives from CAP-X

Partial DLT – Baton Rouge, LA

Quadrant Roadway – Fairfield, OH

Summary of intersection alternatives to evaluate in detailed traffic analysis

	Research Forest Drive	
At-Grade Alternatives	 Conventional intersection Conventional shared RT lane Quadrant roadway SW Quadrant roadway NE Quadrant roadway SE Quadrant roadway NW Partial displaced left-turn (N-S) Partial displaced left-turn (E-W) 	 9. Full displaced left-turn 10. Restricted crossing U-turn (N-S) 11. Restricted crossing U-turn (E-W) 12. Median U-turn (N-S) 13. Median U-turn (E-W) 14. Partial median U-turn (N-S) 15. Partial median U-turn (E-W)
Grade-Separated Alternatives	 Tight diamond (N-S) Tight diamond (E-W) Partial cloverleaf (N-S) Partial cloverleaf (E-W) 	 Diverging diamond (DDI) (N-S) Diverging diamond (DDI) (E-W) Single point (N-S) Single point (E-W)

Intersection identified for detailed traffic evaluation

Summary of intersection alternatives to evaluate in detailed traffic analysis

	Lake Woodlands Drive	
At-Grade Alternatives	 Conventional intersection Conventional shared RT lane Quadrant roadway SW Quadrant roadway NE Quadrant roadway SE Quadrant roadway NW Partial displaced left-turn (N-S) Partial displaced left-turn (E-W) 	 9. Full displaced left-turn 10. Restricted crossing U-turn (N-S) 11. Restricted crossing U-turn (E-W) 12. Median U-turn (N-S) 13. Median U-turn (E-W) 14. Partial median U-turn (N-S) 15. Partial median U-turn (E-W)
Grade-Separated Alternatives	 Tight diamond (N-S) Tight diamond (E-W) Partial cloverleaf (N-S) Partial cloverleaf (E-W) 	 Diverging diamond (DDI) (N-S) Diverging diamond (DDI) (E-W) Single point (N-S) Single point (E-W)

Intersection identified for detailed traffic evaluation

- All Tier 1 intersection alternatives were evaluated in the 2030 and 2045 horizon year
 - 2030 evaluated the short-term intersection needs
 - 2045 evaluated the long-term intersection needs

- Primary criteria used to evaluate and compare included:
 - Overall intersection area delay (LOS = \underline{L} evel \underline{o} f \underline{S} ervice)
 - Number of LOS E and LOS F movements
 - Number of east/west roadway thru lanes and maximum approach width
 - Number of north/south roadway thru lanes and maximum approach width
 - o 2045 alternative residual capacity (ability to operate beyond 2045)
- Synchro Traffic Analysis software was utilized for this analysis using Highway Capacity Manual (HCM) formulas

			115
Level of Service	Signalized Delay (sec)	Unsignalized Delay (sec)	Typical Roadway Conditions
A	< 10	< 10	Primarily free-flow operations. Control delay at intersections is minimal.
в	10 to 20	10 to 15	Ability to maneuver in traffic is slightly restricted. Delay at intersections is not significant.
с	> 20 to 35	> 15 to 25	Stable operations with ability to maneuver in traffic being restricted. Delay at intersections may contribute to congestion.
D	> 35 to 55	> 25 to 35	Small increases in traffic volumes may cause substantial increases in delay. Congestion at intersections is apparent.
E	> 55 to 80	> 35 to 50	Significant delay and poor travel speeds can be expected. Intersections experience significant delay and queuing.
F	> 80	> 50	Delays are at unacceptable levels for most drivers. Roadway network capacity has been exceeded.

• Research Forest Drive and Grogan's Mill Road Intersection Operations Summary

Alternatives Comparsion - Research Forest Drive 2045 Operations							
	Overall	Individual					
	Delay	LOS E/F Movements	Residual Capacity	Alternative Notes			
Eviating Coomatry (/ Jone DED 4 Jone CMD)	LOS D/LOS E	5 - AM Peak	0%	Existing intersection geometry fails at 2045 horizon			
Existing Geometry (o-lane RFD, 4-lane Givik)		8 - PIVI Peak		year.			
Conventional Expansion (8-Jane RED, 4-Jane GMR)	LOS D/LOS D	3 - AIVI Peak	20%	LOS E turning operations, requires 8-hane RFD to not have overall intersection failure			
Contentiental Expansion (<u>o tarto ki b</u> , i tarto ottiny		4- AM Peak		Overall operations acceptable, all left-turn operate			
Quadrant Roadway SW (6-lane RFD, 4-lane GMR)	LOS D/LOS D	4- PM Peak	25%	at effective LOS E/F.			
		0 - AM Peak	200/	Best operations of at-grade alternatives with largest			
Partial Displaced LT N-S (6-lane RFD, 4-lane GMR)		0- PM Peak	30%	footprint and access impacts.			
		4- AM Peak	25%	Overall operations acceptable, all left-turns operate			
Median U-Turn N-S (6-Iane RFD, 4-Iane GMR)	LO3 C/LO3 D	4- PM Peak	2370	at effective LOS E/F.			
		0 - AM Peak	60%	Provides LOS D operations with one LOS E			
Diamond N-S (6-lane RFD, 4-lane GMR)	LO3 D/LO3 D	1- PM Peak	00 %	movement. Has significant residual capacity.			
		0 - AM Peak	60%	Operates at LOS B/C and provides significant residual			
Diverging Diamond N-S (6-lane RFD, 4-lane GMR)	LU3 C/LU3 D	0- PM Peak	00%	capacity.			

Poor	
Good	
Best	

• Research Forest Drive and Lake Woodlands Drive Intersection Operations Summary

Alternatives Comparsion - Lake Woodlands Drive 2045 Operations						
	Overall	Individual				
	Intersection Area	LOS E/F				
	Delay	Movements	Residual Capacity	Reason for Recommendation		
		6 - AM Peak	0%	Existing intersection geometry fails at 2045 horizon		
Existing Geometry (4-lane LWD, 4-lane GMR)	LU3 F7LU3 F	9 - PM Peak	0%	year.		
		4 - AM Peak	2007	Overal LOS is accetpable, however may LOS E/F		
Conventional (<u>6-lane LWD</u> , 6-lane GMR)	LU3 C/LU3 D	4 - PM Peak	20%	movements.		
		2 - AM Peak	EE0/	Large intersction size and would require rework of		
Partial Displaced LT N-S (<u>6-lane LWD</u> , 6-lane GMR)		2 - PM Peak	0070	nearby Lake Woodland Drive signals.		
		4 - AM Peak	200/	Highest delay of at-grade. Left-turns operate at LOS		
Median U-Turn E-W (<u>6-Iane LWD</u> , 6-Iane GMR)	LU3 C/LU3 D	4 - PM Peak	20%	E/F.		
		0 - AM Peak	400/	Additional lanes on GMR provide 5% more residual		
Diamond N-S (4-lane LWD, 6-lane GMR)		0 - PM Peak	40%	capacity.		
		0 - AM Peak	250/	Similar operations with smaller footprint vs. tight		
Single Point N-S (4-lane LWD, 4-lane GMR)		0 - PM Peak	35%	diamond.		

Poor	
Good	
Best	

Summary of intersection alternatives to proceed to preliminary geometric layout

	Research Forest Drive	
At-Grade Alternatives	 Conventional intersection Conventional shared RT lane Quadrant roadway SW Quadrant roadway NE Quadrant roadway SE Quadrant roadway NW Partial displaced left-turn (N-S) Partial displaced left-turn (E-W) 	 9. Low-impact PDLT (N-S) 10. Full displaced left-turn 11. Restricted crossing U-turn (N-S) 12. Restricted crossing U-turn (E-W) 13. Median U-turn (N-S) 14. Median U-turn (E-W) 15. Partial median U-turn (N-S) 16. Partial median U-turn (E-W)
Grade-Separated Alternatives	 Tight diamond (N-S) Tight diamond (E-W) Partial cloverleaf (N-S) Partial cloverleaf (E-W) 	 Diverging diamond (DDI) (N-S) Diverging diamond (DDI) (E-W) Single point (N-S) Single point (E-W)

Intersection selected for detailed traffic evaluation

A In

Additional short-term alternative to extend life of existing infrastructure Intersection identified for preliminary geometric layout

Summary of intersection alternatives to proceed to preliminary geometric layout

	Lake Woodlands Drive	
At-Grade Alternatives	 Conventional intersection Conventional shared RT lane Quadrant roadway SW Quadrant roadway NE Quadrant roadway SE Quadrant roadway NW Partial displaced left-turn (N-S) Partial displaced left-turn (E-W) 	 9. Full displaced left-turn 10. Restricted crossing U-turn (N-S) 11. Restricted crossing U-turn (E-W) 12. Median U-turn (N-S) 13. Median U-turn (E-W) 14. Partial median U-turn (N-S) 15. Partial median U-turn (E-W)
Grade-Separated Alternatives	 Tight diamond (N-S) Tight diamond (E-W) Partial cloverleaf (N-S) Partial cloverleaf (E-W) 	 Diverging diamond (DDI) (N-S) Diverging diamond (DDI) (E-W) Single point (N-S) Single point (E-W)

Intersection selected for detailed traffic evaluation

Intersection identified for preliminary geometric layout

• Preliminary geometric layout completed to evaluate roadway and real estate impacts

• Research Forest Drive

- Alternative 1: Partial Displaced Left-Turn
- Alternative 2: Diverging Diamond Interchange
- Alternative 3: Tight Diamond Interchange
- Alternative 4: Low-Impact Partial Displaced Left-Turn
- Alternative 5: 8-Lane Research Forest Drive Conventional Intersection
- Lake Woodlands Drive
 - Alternative 1: Tight Diamond Interchange

• Research Forest Drive Alternative 1: Partial Displaced Left-Turn

• Research Forest Drive Alternative 2: Diverging Diamond Interchange

ASSOCIATE

• Research Forest Drive Alternative 2: Diverging Diamond Interchange Profile

- MILL GROGANS I INTERCHAN ARCH FOREST ALT 3: TIGHT RESEARCH FOREST JOB NO. 4609.001 PROJECT MGR LRH STRAND ASSOCIATES SHEET ALT 3
- Research Forest Drive Alternative 3: Tight Diamond Interchange

ASSOCIATE

- manne N. × RCH JOB NO. 4609.001 PROJECT MG LRH STRAND ASSOCIATES SHEET ALT 4
- Research Forest Drive Alternative 4: Low-Impact Partial Displaced Left-Turn

• Research Forest Drive Alternative 5: 8-Lane Research Forest Drive Conventional Intersection

Lake Woodlands Drive Alternative 1: Tight Diamond Interchange

Comparison of Conflict Points at Existing and Alternative Intersections

"A Safe System approach to intersection design can include strategies such as minimizing and modifying conflict points..."

FHWA, <u>https://safety.fhwa.dot.gov/intersection/ssi/index.cfm</u>, accessed on 4/7/2021

- Some of the highest crash frequencies in The Woodlands are seen at Tier 1 intersections (Research Forest Drive/Grogans Mill Rd and Lake Woodlands Drive/Grogans Mill Rd)
- To evaluate the impact on intersection safety, a conflict point analysis was performed comparing existing intersections and proposed alternatives

Comparison of Conflict Points at Existing and Alternative Intersections

- There are three types of conflict points:
 - Crossing two traffic movement paths cross each other
 - Typically have a higher incidence of angle and injury crashes
 - Merging two traffic movement paths merge into one path
 - Diverging two traffic movement paths split from one beginning path
- The more conflict points at an intersection, the more potential for crashes
 Reducing the number of conflict points results in lower potential for crashes

STRAND ASSOCIATES

STRANE ASSOCIATES Research Forest Drive Alternative 3: Tight Diamond Interchange

STRAND ASSOCIATES

Research Forest Drive Alternative 5: 8-Lane RFD Conventional Intersection

STRAND ASSOCIATES

Comparison of Conflict Points at Existing and Alternative Intersections

• Research Forest Drive Summary

	2045 Intersect	ion Operations	Conflict Points							
Alternative	AM Peak Hour	PM Peak Hour	Merge	Diverge	Crossing	Total				
Existing Intersection	LOS E	LOS E	10	9	24	43				
Alt 1: Partial Displaced Left Turn	LOS C	LOS C	13	9	68	90				
Alt 2: Diverging Diamond	LOS C	LOS B	11	9	7	27				
Alt 3: Tight Diamond	LOS D	LOS D	11	9	20	40				
Alt 4: Low Impact PDLT (2030 Operations)	LOS C*	LOS C*	11	9	47	67				
Alt 5: Conventional 8-Lane RFD	LOS D [#]	LOS D [#]	11	66	88					
 2030 LOS - 2045 LOS is LOS F 										
* Several LOS E movements. V/C ratio is 0.99		Poor								
		Good								
		Best								

- At-grade improvement alternatives have more conflict points than the existing intersection
 - This is due in part to the additional lanes
- The grade separated alternatives provide a decrease in the number of conflict points
 - The Diverging Diamond interchange reduces the conflict points by 37% when compared to existing intersection

Comparison of Conflict Points at Existing and Alternative Intersections

• Lake Woodlands Drive Summary

	2045 Intersect	ion Operations	Conflict Points				
Alternative	AM Peak Hour	PM Peak Hour	Merge	Diverge	Crossing	Total	
Existing Intersection	LOS F	LOS F	8	8	34	50	
Alt 1: Tight Diamond Interchange	LOS C	LOS C	9	10	34	53	
Alt 2: Partial Displaced Left Turn	LOS C	LOSC	12	8	77	97	
		Poor					
		Good					
		Rost					

- The grade-separated alternative maintains the same number of conflict points as existing
 Similar number of overall lanes on Grogans Mill Road and Lake Woodlands Drive
- At-grade improvement alternative has more conflict points than the existing intersection
 This is due in part to the additional lanes

Preliminary Alternative Costs for Grade-Separated Alternatives

- Research Forest Drive/Grogans Mill Road
 - Alternative 1: Partial Displaced Left Turn \$9.8 million (2021 dollars)
 - Alternative 2: Diverging Diamond Interchange \$14.9 million (2021 dollars)
 - Alternative 3: Tight Diamond Interchange \$15.1 million (2021 dollars)
- Lake Woodland Drive/Grogans Mill Road
 - Alternative 1: Tight Diamond Interchange ~\$17+ million (2021 dollars)

Final Recommendations

• Research Forest Drive and Grogans Mill Road

- Alternative 2: Diverging Diamond Interchange
 - Improved operations
 - Reduced conflict points
 - Fits within the available right of way
- Lake Woodlands Drive and Grogans Mill Road
 - Alternative 1: Tight Diamond Interchange
 - Improved Operations
 - Reduces volume through the traffic signals

Project Next Steps

- Complete the Draft analysis report for review by the County
- Deliver the final Research Forest Drive and Lake Woodlands Drive Traffic Analysis

Intersection Traffic Volumes

Research Forest Drive and Grogans Mill Road – 2030 AM Peak Hour Traffic Volumes

Westbound Thru	1588
Eastbound Thru	1515
Eastbound Right	658
Westbound Left	416
Westbound Right	282

Research Forest Drive and Grogans Mill Road – 2030 PM Peak Hour Traffic Volumes

Westbound Thru	1578
Eastbound Thru	1455
Northbound Left	693
Eastbound Right	392
Northbound Right	320

Research Forest Drive and Grogans Mill Road – 2045 AM Peak Hour Traffic Volumes

Westbound Thru	1764
Eastbound Thru	1687
Eastbound Right	746
Westbound Left	471
Westbound Right	320

Research Forest Drive and Grogans Mill Road – 2045 PM Peak Hour Traffic Volumes

Westbound Thru	1756
Eastbound Thru	1620
Northbound Left	785
Eastbound Right	444
Northbound Right	362

Lake Woodlands Drive and Grogans Mill Road – 2030 AM Peak Hour Traffic Volumes

Westbound Thru	1218
Northbound Thru	858
Eastbound Thru	759
Southbound Thru	607
Westbound Right	466

Lake Woodlands Drive and Grogans Mill Road – 2030 PM Peak Hour Traffic Volumes

Westbound Thru	1250
Eastbound Thru	1137
Southbound Thru	759
Northbound Thru	735
Northbound Left	694

Lake Woodlands Drive and Grogans Mill Road – 2045 AM Peak Hour Traffic Volumes

Westbound Thru	1291
Northbound Thru	1002
Eastbound Thru	804
Southbound Thru	700
Westbound Right	514

Lake Woodlands Drive and Grogans Mill Road – 2045 PM Peak Hour Traffic Volumes

Westbound Thru	1324
Eastbound Thru	1205
Southbound Thru	882
Northbound Thru	874
Northbound Left	764

CAP-X Results Summary

Research Forest Drive and Grogans Mill Road – At Grade CAP-X

	24					2030 At-0	Grade CAP-	X Results	- Research	Forest Dr	ive			
		2 2	AM P	eak Hour	21 D			v 2	PM Pe	PM Peak Hour				
At Grade Alternatives	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Evaluation Status	Reason for Recommendation
Conventional (6-lane RFD)					0.80	0.80					0.82	0.82	Additional Modeling Recommended	
Conventional Shared RT LN (6-lane RFD)					0.83	0.83					0.88	0.88	Consider Dismissal by Project Team	Conventional provides better operations
Quadrant Roadway SW		0.57		0.55	0.63	0.63		0.71		0.62	0.61	0.71	Additional Modeling Recommended	
Quadrant Roadway NE	0.61		0.65		0.65	0.65	0.62		0.59		0.77	0.77	Consider Dismissal by Project Team	Large anticipated real estate impacts
Quadrant Roadway SE		0.57	0.57		0.70	0.70		0.81	0.81		0.70	0.81	Consider Dismissal by Project Team	Large anticipated real estate impacts
Quadrant Roadway NW	0.53			0.51	0.70	0.70	0.60			0.70	0.66	0.70	Consider Dismissal by Project Team	Large anticipated real estate impacts
Partial Displaced LT N-S	0.29	0.52			0.71	0.71	0.30	0.49			0.67	0.67	Additional Modeling Recommended	
Partial Displaced LT E-W			0.47	0.52	0.66	0.66			0.39	0.59	0.70	0.70	Consider Dismissal by Project Team	Partial DLT N-S provides better accomodation for heavy NBL
Displaced LT	0.17	0.39	0.61	0.52	0.51	0.61	0.18	0.59	0.46	0.59	0.79	0.79	Consider Dismissal by Project Team	Large anticipated real estate impacts and Partial DLT (N-S) acceptable operations operations
Restricted Crossing U-Turn N-S	0.96	0.88	1.84	1.26		1.84	0.89	1.03	1.80	1.20		1.80	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Restricted Crossing U-Turn E-W	0.59	0.51	0.67	0.63		0.67	0.70	0.63	0.77	0.54		0.77	Consider Dismissal by Project Team	Median U-turn provides better operations
Median U-Turn N-S	0.44	0.41			0.51	0.51	0.54	0.59			0.70	0.70	Additional Modeling Recommended	
Median U-Turn E-W			0.66	0.69	0.59	0.69			0.75	0.54	0.75	0.75	Consider Dismissal by Project Team	Median U-turn N-S provides better operations
Partial Median U-Turn N-S	0.28	0.26			0.68	0.68	0.46	0.45			0.83	0.83	Consider Dismissal by Project Team	Median U-turn provides better operations
Partial Median U-Turn E-W	-		0.56	0.66	0.68	0.68			0.48	0.50	0.83	0.83	Consider Dismissal by Project Team	Median U-turn provides better operations

						2045 At-G	ade CAP-	X Results -	Research	Forest Dr	ive			
	2		AM Pe	eak Hour					PM Pe	ak Hour			5	
At Grade Alternatives	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Evaluation Status	Reason for Recommendation
Conventional (6-lane RFD)					0.81	0.81					0.89	0.89	Additional Modeling Recommended	
Conventional Shared RT LN (6-lane RFD)					0.93	0.93					1.00	1.00	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Quadrant Roadway SW		0.64		0.61	0.71	0.71		0.81		0.70	0.69	0.81	Additional Modeling Recommended	
Quadrant Roadway NE	0.70		0.73		0.74	0.74	0.70		0.66		0.87	0.87	Consider Dismissal by Project Team	Large anticipated real estate impacts
Quadrant Roadway SE		0.64	0.64		0.79	0.79		0.91	0.91		0.78	0.91	Consider Dismissal by Project Team	Large anticipated real estate impacts
Quadrant Roadway NW	0.60			0.58	0.80	0.80	0.68			0.79	0.75	0.79	Consider Dismissal by Project Team	Large anticipated real estate impacts
Partial Displaced LT N-S	0.33	0.59			0.80	0.80	0.35	0.56			0.76	0.76	Additional Modeling Recommended	
			- 10						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	2012				Partial DLT N-S provides better accomodation for heavy
Partial Displaced LT E-W			0.53	0.58	0.75	0.75			0.44	0.66	0.79	0.79	Consider Dismissal by Project Team	NBL
														Large anticipated real estate impacts and Partial DLT (N-S)
Displaced LT	0.19	0.35	0.68	0.58	0.55	0.68	0.20	0.41	0.51	0.66	0.63	0.66	Consider Dismissal by Project Team	acceptable operations operations
Restricted Crossing U-Turn N-S	1.08	0.99	2.05	1.40		2.05	1.00	1.16	2.01	1.33		2.01	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Restricted Crossing U-Turn E-W	0.67	0.58	0.75	0.71		0.75	0.79	0.71	0.87	0.61		0.87	Consider Dismissal by Project Team	Median U-turn provides better operations
Median U-Turn N-S	0.50	0.47			0.58	0.58	0.61	0.67			0.79	0.79	Additional Modeling Recommended	
Median U-Turn E-W			0.74	0.77	0.67	0.77			0.84	0.60	0.84	0.84	Consider Dismissal by Project Team	Median U-turn N-S provides better operations
Partial Median U-Turn N-S	0.32	0.30			0.76	0.76	0.52	0.52			0.93	0.93	Consider Dismissal by Project Team	Median U-turn provides better operations
Partial Median U-Turn E-W			0.62	0.74	0.76	0.76			0.53	0.57	0.93	0.93	Consider Dismissal by Project Team	Median U-turn provides better operations

Research Forest Drive and Grogans Mill Road – Grade Sep CAP-X

						20	45 Grade S	eparated	CAP-X Resu	ults - Resea	arch Forest	Drive				
				AM Peak Hour				and a second second second	all stars and		PM Peak Hour	s				
	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6		Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6			
At Grade Alternatives	(Rt Mrg)	(Lt Mrg)	(Ctr. 1)	(Ctr. 2)	(Lt Mrg)	(Lt Mrg)	Overall v/c	(Rt Mrg)	(Lt Mrg)	(Ctr. 1)	(Ctr. 2)	(Lt Mrg)	(Lt Mrg)	Overall v/c	Evaluation Status	Reason for Recommendation
Diamond N-S			0.70	0.68		1	0.70			0.70	0.52			0.70	Additional Modeling Recommended	
Diamond E-W			0.62	0.64			0.64			0.75	0.67			0.75	Consider Dismissal by Project Team	Does not remove heavy RFD thru traffic from signals
Double Crossover Diamond N-S	0.36	0.43	0.26	0.42	0.31	0.49	0.49	0.26	0.26	0.25	0.48	0.46	0.30	0.48	Additional Modeling Recommended	
Double Crossover Diamond E-W	0.62	0.84	0.45	0.57	0.84	0.54	0.84	0.78	0.92	0.44	0.68	0.78	0.63	0.92	Consider Dismissal by Project Team	Does not remove heavy RFD thru traffic from signals
Single Point N-S	0.52	-	0.51		-	0.52	0.52	0.42		0.81			0.32	0.81	Consider Dismissal by Project Team	Diamond and DCD provide better operations
Single Point E-W	0.62		0.79			0.54	0.79	0.78		0.78			0.63	0.78	Consider Dismissal by Project Team	Does not remove heavy RFD thru traffic from signals

Lake Woodlands Drive and Grogans Mill Road – At Grade CAP-X

						2030 At-0	Grade CAP-	X Results -	Lake Woo	dlands Dri	ve			70
		×	AM Pe	ak Hour					PM Pe	ak Hour	3 22			
At Grade Alternatives	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Evaluation Status	Reason for Recommendation
Conventional (4-lane LWB)					0.76	0.76					0.92	0.92	Additional Modeling Recommended	x
Conventional Shared RT LN (4-lane LWB)			\sim		1.05	1.05			\sim		1.22	1.22	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Quadrant Roadway SW		0.44		0.53	0.70	0.70		0.58		0.76	0.79	0.79	Consider Dismissal by Project Team	Large anticipated real estate impacts
Quadrant Roadway NE	0.67		0.54		0.90	0.90	0.57		0.72		1.06	1.06	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Quadrant Roadway SE		0.45	0.45		0.78	0.78		0.62	0.62		0.93	0.93	Consider Dismissal by Project Team	Quadrant SW provides better operations
Quadrant Roadway NW	0.47			0.55	0.83	0.83	0.54			0.86	0.95	0.95	Consider Dismissal by Project Team	Quadrant SW provides better operations
Partial Displaced LT N-S	0.36	0.37			0.70	0.70	0.41	0.55			0.70	0.70	Additional Modeling Recommended	
Partial Displaced LT E-W			0.33	0.56	0.71	0.71			0.52	0.63	0.86	0.86	Consider Dismissal by Project Team	Partial DLT (N-S) provides better operations
	et 2.	(3).	1											Large anticipated real estate impacts and Partial DLT (N-S)
Displaced LT	0.36	0.37	0.38	0.56	0.66	0.66	0.41	0.55	0.61	0.63	0.63	0.63	Consider Dismissal by Project Team	provides similar operations
Restricted Crossing U-Turn N-S	0.78	0.80	1.19	1.25		1.25	0.95	1.03	1.53	1.48		1.53	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Restricted Crossing U-Turn E-W	0.70	0.76	1.08	0.69		1.08	0.90	0.98	1.08	0.98		1.08	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Median U-Turn N-S	0.46	0.54			0.78	0.78	0.73	0.68			0.86	0.86	Consider Dismissal by Project Team	Median U-turn E-W is a better fit for existing R/W
Median U-Turn E-W			0.77	0.51	0.70	0.77			0.80	0.78	0.87	0.87	Additional Modeling Recommended	
Partial Median U-Turn N-S	0.40	0.55			0.76	0.76	0.63	0.77			0.94	0.94	Consider Dismissal by Project Team	Median U-turn provides better operations
Partial Median U-Turn E-W			0.64	0.53	0.76	0.76			0.54	0.78	0.94	0.94	Consider Dismissal by Project Team	Median U-turn provides better operations

						2045 At-0	Grade CAP-	X Results -	Lake Woo	dlands Dr	ive			
			AM Pe	ak Hour					PM Pe	ak Hour				
At Grade Alternatives	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Zone 1 (N)	Zone 2 (S)	Zone 3 (E)	Zone 4 (W)	Zone 5 (Center)	Overall v/c	Evaluation Status	Reason for Dismissal
Conventional (6-lane LWB)					0.77	0.77					0.93	0.93	Additional Modeling Recommended	
Conventional Shared RT LN (6-lane LWB)					0.97	0.97					1.14	1.14	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Quadrant Roadway SW		0.50		0.50	0.78	0.78		0.81		0.82	0.87	0.87	Consider Dismissal by Project Team	Large anticipated real estate impacts
Quadrant Roadway NE	0.76		0.59		1.00	1.00	0.65		0.78		1.18	1.18	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Quadrant Roadway SE		0.51	0.51		0.86	0.86		0.70	0.70	-	1.03	1.03	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Quadrant Roadway NW	0.53			0.59	0.92	0.92	0.59			0.93	1.07	1.07	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Partial Displaced LT N-S	0.42	0.42			0.78	0.78	0.47	0.62			0.76	0.76	Additional Modeling Recommended	1 2
Partial Displaced LT E-W			0.35	0.60	0.78	0.78			0.56	0.68	0.95	0.95	Consider Dismissal by Project Team	Partial DLT (N-S) provides better operations
														Large anticipated real estate impacts and Partial DLT (N-S)
Displaced LT	0.42	0.42	0.41	0.60	0.72	0.72	0.47	0.62	0.65	0.68	0.70	0.70	Consider Dismissal by Project Team	provides similar operations
Restricted Crossing U-Turn N-S	0.85	0.88	1.28	1.34		1.34	1.04	1.13	1.63	1.58		1.63	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Restricted Crossing U-Turn E-W	0.76	0.86	1.19	0.76		1.19	0.98	1.11	1.20	1.08		1.20	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Median U-Turn N-S	0.52	0.61			0.86	0.86	0.82	0.77			0.94	0.94	Consider Dismissal by Project Team	Median U-turn E-W is a better fit for existing R/W
Median U-Turn E-W			0.83	0.55	0.78	0.83			0.87	0.84	0.94	0.94	Additional Modeling Recommended	
Partial Median U-Turn N-S	0.45	0.63			0.83	0.83	0.71	0.87			1.04	1.04	Consider Dismissal by Project Team	Overall LOS greater than 1.00
Partial Median U-Turn E-W			0.69	0.57	0.83	0.83			0.58	0.84	1.04	1.04	Consider Dismissal by Project Team	Overall LOS greater than 1.00

Lake Woodlands Drive and Grogans Mill Road – Grade Sep CAP-X

						20	45 Grade S	eparated	CAP-X Resu	lts - Lake	Woodlands	Drive			5	27
	·	11	2 20 20	AM Peak Hou		10 17 10 10 10 10 10 10 10 10 10 10 10 10 10			2	20 00 02 0	PM Peak Hour		0.5 PHE 2003			
	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6		Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6			
At Grade Alternatives	(Rt Mrg)	(Lt Mrg)	(Ctr. 1)	(Ctr. 2)	(Lt Mrg)	(Lt Mrg)	Overall v/c	(Rt Mrg)	(Lt Mrg)	(Ctr. 1)	(Ctr. 2)	(Lt Mrg)	(Lt Mrg)	Overall v/c	Evaluation Status	Reason for Recommendation
Diamond N-S			0.54	0.43		1	0.54			0.71	0.57		1	0.71	Consider Dismissal by Project Team	
Diamond E-W			0.49	0.64			0.64			0.74	0.84			0.84	Consider Dismissal by Project Team	Does not remove heavy LWD thru traffic from signals
Double Crossover Diamond N-S	0.57	0.37	0.49	0.58	0.36	0.44	0.58	0.29	0.55	0.56	0.71	0.36	0.61	0.71	Consider Dismissal by Project Team	Diamond and Single Point provide better operations.
Double Crossover Diamond E-W	0.40	0.64	0.36	0.45	0.60	0.48	0.64	0.54	0.83	0.58	0.59	0.81	0.77	0.83	Consider Dismissal by Project Team	Does not remove heavy LWD thru traffic from signals
Single Point N-S	0.72	-	0.52	-		0.46	0.72	0.40		0.62			0.64	0.64	Additional Modeling Recommended	
Single Point E-W	0.58		0.61			0.48	0.61	0.76		0.76			0.77	0.77	Consider Dismissal by Project Team	Does not remove heavy LWD thru traffic from signals

Synchro Results Summary

Research Forest Drive and Grogans Mill Road – Synchro

				2030 Alte	ernatives Sy	nchro LOS - Re	search Fore	st Drive			A. 1944 - 1944			
	la marene	54 / U - 20	100-003	AM Pea	k Hour						PM Pea	k Hour		
	Overall De	elay (sec)	E/W	Roadway	N/S	Roadway	Overall De	lay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity	
Alternatives	& L(OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F	& L(OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F
Conventional (6-lane RFD, 4-lane GMR)	43.1	D	6	118	4	94		44.9	D	6	118	4	94	
Quadrant Roadway SW (6-Iane RFD, 4-Iane GMR)	35.4	D	6	130	4	70		39.1	D	6	130	4	70	
Partial Displaced LT N-S (6-lane RFD, 4-lane GMR)	27.1	С	6	118	- 4	126		22.2	C	6	118	4	126	Ŧ
Median U-Turn N-S (6-lane RFD, 4-lane GMR)	28.5	С	6	106	4	106		34.5	С	6	106	4	106	
Diamond N-S (6-lane RFD, 4-lane GMR)	38.7	D	4	124	4	94	-	36.3	D	4	124	4	94	
Diverging Diamond N-S (6-Iane RFD, 4-Iane GMR)	19.6	В	4	124	4	80		14.3	В	4	124	4	80	

				2045 w/2030	Alternative	s Synchro LOS	- Research I	Forest D	rive					
	5		21	AM Pea	k Hour	3				22	PM Pea	k Hour	3	
	Overall De	lay (sec)	E/W	Roadway	N/S I	Roadway	Residual Capacity	Overall De	lay (sec)	E/W	Roadway	N/SI	Roadway	Residual Capacity
Alternatives	& L(DS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F	& L0	OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F
Conventional (6-lane RFD, 4-lane GMR)	50.5	D	6	118	4	94		62.4	E	6	118	4	94	
Quadrant Roadway SW (6-Iane RFD, 4-Iane GMR)	40.5	D	6	130	4	70		47.5	D	6	130	4	70	
Partial Displaced LT N-S (6-lane RFD, 4-lane GMR)	36.3	D	6	118	4	126		25.9	С	6	118	4	126	
Median U-Turn N-S (6-Iane RFD, 4-Iane GMR)	29.1	С	6	106	4	106		38.1	D	6	106	4	106	
Diamond N-S (6-lane RFD, 4-lane GMR)	41.7	D	4	124	4	94		36.6	D	4	124	4	94	
Diverging Diamond N-S (6-Iane RFD, 4-Iane GMR)	21.3	С	4	124	4	80	+	15.4	В	4	124	4	80	

				2045 Alte	ernatives Sy	nchro LOS - Re	search Fore	st Drive						
				AM Pea	k Hour	an a					PM Pea	k Hour	No. and Anna	
	Overall De	elay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity	Overall De	ay (sec)	E/W	Roadway	N/S F	Roadway	Residual Capacity
Alternatives	& L	OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F	& L0	S	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F
Conventional (8-lane RFD, 4-lane GMR)	43.0	D	8	142	4	94	20%	46.1	D	8	142	4	94	20%
Quadrant Roadway SW (6-Iane RFD, 4-Iane GMR)	35.4	D	6	130	.4	106	40%	39.5	D	6	130	4	106	25%
Partial Displaced LT N-S (6-lane RFD, 4-lane GMR)	25.0	С	6	130	4	138	35%	21.9	С	6	130	4	138	30%
Median U-Turn N-S (6-lane RFD, 4-lane GMR)	28.3	С	6	106	4	106	60%	37.7	D	6	106	4	106	25%
Diamond N-S (6-lane RFD, 4-lane GMR)	39.1	D	6	148	4	94	60%	38.2	D	6	148	4	94	65%
Diverging Diamond N-S (6-Iane RFD, 4-Iane GMR)	22.1	C	6	148	4	80	60%	17.5	В	6	148	4	80	65%

Lake Woodlands Drive and Grogans Mill Road – Synchro

				2030 Alt	ernatives Sy	nchro LOS - Re	search Fores	t Drive						
			\$3	AM Pea	k Hour		53			3	PM Pea	k Hour		
	Overall De	elay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity	Overall De	ay (sec)	E/W	Roadway	N/SI	Roadway	Residual Capacity
Alternatives	& L	OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F	& L0	S	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F
Conventional (4-lane LWD, 4-lane GMR)	46.2	D	4	94	4	94		69.5	E	4	94	4	94	
Partial Displaced LT N-S (4-lane LWD, 4-lane GMR)	36.1	D	4	106	4	138		34.7	С	4	106	4	138	
Median U-Turn E-W (4-lane LWD, 4-lane GMR)	40.8	D	4	106	4	82		57.9	E	4	106	4	82	
Diamond N-S (4-lane LWD, 4-lane GMR)	33.8	С	4	124	4	106	. · · · · · · · · · · · · · · · · · · ·	37.1	D	4	124	4	106	
Single Point N-S (4-Iane LWD, 4-Iane GMR)	30.8	C	4	124	4	94		30.8	С	4	124	4	94	

				2045 w/2030) Alternative	es Synchro LOS	- Research F	orest D	rive					
				AM Pea	k Hour						PM Pea	k Hour		4
	Overall De	lay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity	Overall De	lay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity
Alternatives	& L0	DS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F	& L(OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F
Conventional (4-lane LWD, 4-lane GMR)	67.9	E	4	94	4	94		90.4	F	4	94	4	94	
Partial Displaced LT N-S (4-lane LWD, 4-lane GMR)	50.1	D	4	106	-4	138		44.7	D	4	106	4	138	
Median U-Turn E-W (4-Iane LWD, 4-Iane GMR)	53.1	D	4	106	4	82		62.8	E	4	106	4	82	
Diamond N-S (4-lane LWD, 4-lane GMR)	36.0	D	4	124	. 4	106		38.2	D	4	124	4	106	
Single Point N-S (4-lane LWD, 4-lane GMR)	32.2	С	4	124	4	94		33.0	C	4	124	4	94	-

				2045 Alt	ernatives Sy	nchro LOS - Re	search Fores	t Drive						
			20 22	AM Pea	k Hour					5 M.C.	PM Pea	k Hour		
	Overall De	lay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity	Overall De	lay (sec)	E/W	Roadway	N/S	Roadway	Residual Capacity
Alternatives	& L0	OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F	& L(OS	# of Thru Lanes	Approach Width (ft)	# of Thru Lanes	Approach Width (ft)	to LOS F
							Î							
Conventional (6-lane LWD, 6-lane GMR)	32.5	С	6	118	6	118	30%	43.7	D	6	118	6	118	20%
	200									_	400			
Partial Displaced LT N-S (6-lane LWD, 6-lane GMR)	26.5	C	6	130	6	162	55%	22.1	C	6	130	6	162	55%
Median U-Turn E-W (6-Iane LWD, 6-Iane GMR)	30.5	с	6	130	6	106	50%	47.2	D	6	130	6	106	20%
Diamond N-S (4-lane LWD, 6-lane GMR)	31.6	с	6	148	6	130	70%	34.9	С	6	148	6	130	40%
Single Point N-S (4-lane LWD, 4-lane GMR)	32.7	с	6	148	4	94	50%	33.5	С	6	148	4	94	35%

Synchro Summary

Alternatives Com	parsion - Rese	arch Forest	Drive 2045 C	Operations
	Overall Intersection Area Delay	Individual LOS E/F Movements	Residual Capacity	Alternative Notes
Existing Geometry (6-lane RFD, 4-lane GMR)	LOS D/LOS E	5 - AM Peak 8 - PM Peak	0%	Existing intersection geometry fails at 2045 horizon year.
Conventional Expansion (8-lane RFD, 4-lane GMR)	LOS D/LOS D	3 - AM Peak 4 - PM Peak	20%	Poor turning operations, requires 8-lane RFD to not have overall interseciton failure.
Quadrant Roadway SW (6-lane RFD, 4-lane GMR)	LOS D/LOS D	4- AM Peak 4- PM Peak	25%	Overall operations acceptable, all left-turn operate at effective LOS E/F.
Partial Displaced LT N-S (6-lane RFD, 4-lane GMR)	LOS C/LOS C	0 - AM Peak 0- PM Peak	30%	Best operations of at-grade alternatives with largest footprint and access impacts.
Median U-Turn N-S (6-lane RFD, 4-lane GMR)	LOS C/LOS D	4- AM Peak 4- PM Peak	25%	Overall operations acceptable, all left-turns operate at effective LOS E/F.
Diamond N-S (6-lane RFD, 4-lane GMR)	LOS D/LOS D	0 - AM Peak 1- PM Peak	60%	Provides LOS D operations with one LOS E movement. Has significant residual capacity.
Diverging Diamond N-S (6-lane RFD, 4-lane GMR)	LOS C/LOS B	0 - AM Peak 0- PM Peak	60%	Operates at LOS B/C and provides significant residual capacity.

Alternatives Comparsion - Lake Woodlands Drive 2045 Operations				
	Overall Intersection Area Delay	Individual LOS E/F Movements	Residual Capacity	Reason for Recommendation
Existing Geometry (4-lane LWD, 4-lane GMR)	LOS F/LOS F	6 - AM Peak 9 - PM Peak	0%	Existing intersection geometry fails at 2045 horizon year.
Conventional (6-lane LWD , 6-lane GMR)	LOS C/LOS D	4 - AM Peak 4 - PM Peak	20%	Overal LOS is accetpable, however may LOS E/F movements.
Partial Displaced LT N-S (<u>6-lane LWD</u> , 6-lane GMR)	LOS C/LOS C	2 - AM Peak 2 - PM Peak	55%	Large intersction size and would require rework of nearby Lake Woodland Drive signals.
Median U-Turn E-W (<u>6-lane LWD</u> , 6-lane GMR)	LOS C/LOS D	4 - AM Peak 4 - PM Peak	20%	Highest delay of at-grade. Left-turns operate at LOS E/F.
Diamond N-S (4-lane LWD, 6-lane GMR)	LOS C/LOS C	0 - AM Peak 0 - PM Peak	40%	Additional lanes on GMR provide 5% more residual capacity.
Single Point N-S (4-lane LWD, 4-lane GMR)	LOS C/LOS C	0 - AM Peak 0 - PM Peak	35%	Similar operations with smaller footprint vs. tight diamond.

STRAND **ASSOCIATES**[®]

Excellence in Engineering Since 1946